Data from ILAM surveys conducted by ARCOS in Rusumo landscape for year 2016
Dernière version Publié par Albertine Rift Conservation Society (ARCOS) le Sep 28, 2021
In the effort to promote informed policy and decision making and planning at different levels of the governments, ARCOS conducts regular surveys in key landscapes in Rwanda. These studies follow a framework termed Integrated Landscape Assessment and Monitoring (ILAM) where biodiversity, ecosystem services and socio-economic aspects are looked at using indicators classified through the OECD's Pressure-State-Response model. This dataset therefore contains data generated through an ILAM study that was conducted by ARCOS in Rusumo landscape (Kirehe District) in the downstream part of Akagera river. The survey was conducted with funding support from the Rwanda’s Fund for Environment and Climate Change (FONERWA)under a project a project entitled "Using Water_Energy_Food Security Nexus to Promote Climate Resilient Decisions and Model Actions in selected Landscapes along Akagera Basin"
Enregistrements de données
Les données de cette ressource données d'échantillonnage ont été publiées sous forme d'une Archive Darwin Core (Darwin Core Archive ou DwC-A), le format standard pour partager des données de biodiversité en tant qu'ensemble d'un ou plusieurs tableurs de données. Le tableur de données du cœur de standard (core) contient 42 enregistrements. 1 tableurs de données d'extension existent également. Un enregistrement d'extension fournit des informations supplémentaires sur un enregistrement du cœur de standard (core). Le nombre d'enregistrements dans chaque tableur de données d'extension est illustré ci-dessous.
- Event (noyau)
- Occurrence
Cet IPT archive les données et sert donc de dépôt de données. Les données et métadonnées des ressources sont disponibles au téléchargement dans la section téléchargements. Le tableau des versions liste les autres versions de chaque ressource rendues disponibles de façon publique et permet de tracer les modifications apportées à la ressource au fil du temps.
Téléchargements
Téléchargez la dernière version de la ressource en tant qu'Archive Darwin Core (DwC-A), ou les métadonnées de la ressource au format EML ou RTF :
Données sous forme de fichier DwC-A (zip) | télécharger 42 enregistrements dans Anglais (13 KB) - Fréquence de mise à jour: quand cela est nécessaire |
---|---|
Métadonnées sous forme de fichier EML | télécharger dans Anglais (18 KB) |
Métadonnées sous forme de fichier RTF | télécharger dans Anglais (16 KB) |
Versions
Le tableau ci-dessous n'affiche que les versions publiées de la ressource accessibles publiquement.
Comment citer
Les chercheurs doivent citer cette ressource comme suit:
Gashakamba F (2018): Data from ILAM surveys conducted by ARCOS in Rusumo landscape for year 2016. v1.4. Albertine Rift Conservation Society (ARCOS). Dataset/Samplingevent. http://arbmis.arcosnetwork.org/ipt/resource?r=ilam_data_rusumo_2016&v=1.4
Droits
Les chercheurs doivent respecter la déclaration de droits suivante:
L’éditeur et détenteur des droits de cette ressource est Albertine Rift Conservation Society (ARCOS). To the extent possible under law, the publisher has waived all rights to these data and has dedicated them to the Public Domain (CC0 1.0). Users may copy, modify, distribute and use the work, including for commercial purposes, without restriction.
Enregistrement GBIF
Cette ressource a été enregistrée sur le portail GBIF, et possède l'UUID GBIF suivante : 5d17a4fd-7249-46c0-a56b-1924d477b29e. Albertine Rift Conservation Society (ARCOS) publie cette ressource, et est enregistré dans le GBIF comme éditeur de données avec l'approbation du Albertine Rift Conservation Society.
Mots-clé
Samplingevent
Contacts
Personne ayant créé cette ressource:
Personne pouvant répondre aux questions sur la ressource:
Personne ayant renseigné les métadonnées:
Autres personnes associées à la ressource:
Couverture géographique
Rusumo landscape is located in downstream part of Akagera basin and is characterized by lowly undulating hills separated by valleys some of which are swampy. The area is generally dominated by farmland, with few wetlands and woodland (mostly eucalyptus woodlots). The natural forests which are disappearing completely are characterized by the savanna type with a variety of trees dominated by acacia. Communities in the landscape are settled into agglomerations commonly called Umudugudu. According to the Kirehe district's development plan, the Rusumo landscape has climatic intervals of four seasons per year making it possible to make two annual harvests on the same parcel of land. Agriculture is strongly dependent on the seasonal climatic changes, primarily with regards to the rainfall.
Enveloppe géographique | Sud Ouest [-2.401, 30.725], Nord Est [-2.212, 30.878] |
---|
Couverture taxonomique
This dataset covers birds, odonata (dragonflies and damselflies) and butterflies.
Class | Birds |
---|---|
Order | Odonata (Dragonflies and Damselflies), Butterflies (Butterflies) |
Couverture temporelle
Date de début / Date de fin | 2016-02-15 / 2015-02-20 |
---|
Données sur le projet
This dataset has been published with support from a GBIF-mediated initiative called BID (Diodiversity Information for Development). This data itself was collected in the framework of a project implemented by ARCOS with the goal to provide evidence-based policy guidance and promote local actions that foster climate resilience and participatory sustainable development along the Akagera Basin
Titre | The Albertine Rift Biodiversity Data Mobilization Project |
---|---|
Identifiant | BID-AF2015-0115-REG |
Financement | The European Union through the BID project Rwanda’s Fund for Environment and Climate Change (FONERWA) |
Description du domaine d'étude / de recherche | The project has been implemented in 3 landscapes in Rwanda which have been identified to represent the upstream, midstream and downstream parts of the Akagera River. |
Les personnes impliquées dans le projet:
Méthodes d'échantillonnage
The following is the methodology that was used during the survey: 1. Birds surveys a. Transect Sampling design: Three transects of 2 km long each, were designed; two covering the edges of the wetland and one covering different agro-ecosystems of the study sites in Kirehe landscape. The line transect was the best method to use since the area is open (Owiunji at al. 2005). The transect was long enough to cover the variation of habitat types and land uses (David Hill at al. 2005). b. Point counts: Points were established at an interval of 200 m along transects, as a single station from which bird counts were made with 25 m radius. Each point in this study was visited twice to maximize the sampling efforts (David Hill at al. 2005). Dominant habitat types at each point count was recorded and GPS points were taken for each point to help easier monitoring for the next years. At each point, observers waited for 2 minutes to allow birds to settle down and then record all sightings and calls of birds for a period of 10 minutes. This suits cryptic, shy and skulking species and populations of higher density and species richness in either open or closed habitats (David Hill at al. 2005). Other recorded data included habitat types and threats ranked into 4 categories. The team then moved on to the next point and repeated the same process until a transect is covered. The main target was to use recorded data to produce a bird checklist, measure species richness, and abundance, as well as the impacts of threats to birds species habitat. c. Opportunistic sampling: Opportunistic observations were also used to maximize the number of species encountered in each transect and in the landscape. All bird species seen or heard at different times of the day, outside of point counts transects was recorded and used to update the species list for the surveyed sectors (Owiunji at al. 2005). The analysis has focused on classifying bird species encountered along the transects into ecological categories, summaries of individuals in each habitat category to determine the major groups dominating the different habitats. Shannon Wiener diversity index, and evenness were calculated to compare diversity in different habitat types (A high value of H’ indicates a large number of species with similar abundances, a low value indicates domination by a few species). To assess the conservation status of the surveyed birds, their status on the IUCN Red List and Albertine Rift endemics (ARE) were determined. Ecological categories used in this analysis included: - RB: Resident in the country and breeding recorded confirmed - F: Forest visitor - FF: Forest Specialist-Species typical of forest interiors - NBR: Non-breeding Resident - VS: Visitor/Migrant/Wanderer - NF: Non-forest species - O: Occasional Visitor / - P: Palearctic migrant –a species not breads in Europe or Asia - PAM: Palearctic Migrant - W: Water bird specialist- Normally restricted to wetland or open water - M: Migrant - IAM: Interafrican Migrant - B: Breeding Note that the number of ecological classes is an initial measure of an ecosystem’s wise use while the proportion of classes and their relative abundance are affected by change in ecosystem structure. 2. Butterflies survey Established butterfly monitoring methods are designed for open habitats such as grasslands. Not all rare species occupy habitats that are easy to see across and navigate, in which cases a new approach to monitoring was necessary. The most common methods used for monitoring butterfly populations are mark-recapture and transect counts. Mark-recapture methods are the most rigorous because they allow for estimation of daily and total population sizes, recruitment, survival, and detection probabilities (Haddad et al. 2008). For this ILAM, the goal was to survey butterflies from each habitat type and calculate the species richness and abundance. The team used the same line transects set for birds surveys. maximize our time spent surveying, each site was visited twice, and the survey ‘‘point’’ (the center of the location where we were conducting our butterfly counts) was based at every 200m along that line (Erica at al. 2015). At each survey point, butterflies individuals were either captured using the insect net or a high-resolution camera to make sure that butterflies at the point were detected with certainty (Thomas at al. 2010). A magnifying lens, and a hand-book were used for direct identification of individuals capture by the insect net (Erica at al.2015). We started our survey the moment we arrived at the survey point and recorded any butterflies species flushed from the point upon approach as detected at the start of the survey period which was fixed at 10 min to not allow much movements of butterflies toward the observers and hence limit the fact of overestimating the abundance and species richness (Buckland 2006). We have only recorded butterflies that were distant from the observer in 2 m intervals for more precision and accuracy (Thomas et al. 2010). All counts were done from 9:30 to 16:30 to reduce factors that can dramatically influence detectability like weather conditions (Erica at al 2015). Data were treated using Microsoft excel to calculate the Shannon-Weiner (H’) diversity index, the Evenness (J’) as a measure of species richness in different habitat types. Biodiversity Professional (Lambshead et al. 1977) was used to plot the rarefaction curve for comparing the species richness in different habitat types and landscapes (Teodorescu and Cogălniceanu, 2002). 3 Dragonflies and damselflies survey Transects can be counted every week, two weeks, or monthly from May to September, or just during the relevant flight period for rare species (British dragonfly society, 2009). For our ILAM survey, multiple sample sites within different natural habitats (wetlands), agro-ecosystems and residential areas were sampled for dragonflies and damselflies in Kirehe landscape and Visual encounter surveys of adult odonates were carried out from the month of March to June 2016 randomly in morning 9:30 am to 12:00 and afternoon from 3pm to 5:30 pm with fine weather conditions. The counting zones were 5m out from the water’s edge on one side and 2m on either side of the transect in agroecosystem areas (British dragonfly society, 2009). The survey was conducted along a 2km long transect that could cover different types of habitats, and a scan was made in each surveying center for 10 minutes. All the dragonflies and damselflies observed were identified visually with the aid of a pair of close-focus binoculars or caught with an aerial net when necessary and identified using the field guide. Pictures of dragonflies and damselflies were taken to help in subsequent identification. Subsequent captures were identified and released from the insect nets.
Etendue de l'étude | The surveys were conducted in Rusumo landscape specifically the two administrative sectors (Nyamugari and Kigarama) that surrounds the Rusomo falls on Akagera river. |
---|
Description des étapes de la méthode:
- The steps that were followed during the surveys were different depending on the taxa at hand as described in the sampling description section above.
Citations bibliographiques
- Albertine Rift Conservation Society (ARCOS), ILAM survey, 2016
Métadonnées additionnelles
Objet | This dataset has been created to facilitate access of data on freshwater biodiversity of Rwanda by different practitioners and researchers from everywhere. This is part of ARCOS' effort to promote wide access to information on key ecosystems of the albertine rift where freshwater ecosystems have a special emphasis. |
---|---|
Description de la fréquence de mise à jour | This dataset will be updated as per-need basis. |
Identifiants alternatifs | 5d17a4fd-7249-46c0-a56b-1924d477b29e |
http://arbims.arcosnetwork.org/ipt/resource?r=ilam_data_rusumo_2016 |